Indexed linear logic and higher-order model checking
نویسندگان
چکیده
منابع مشابه
Indexed linear logic and higher-order model checking
In recent work, Kobayashi observed that the acceptance by an alternating tree automaton A of an infinite tree T generated by a higher-order recursion scheme G may be formulated as the typability of the recursion scheme G in an appropriate intersection type system associated to the automaton A . The purpose of this article is to establish a clean connection between this line of work and Bucciare...
متن کاملRelational Semantics of Linear Logic and Higher-order Model Checking
In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of a higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreov...
متن کاملFinitary Semantics of Linear Logic and Higher-Order Model-Checking
In this paper, we explain how the connection between higherorder model-checking and linear logic recently exhibited by the authors leads to a new and conceptually enlightening proof of the selection problem originally established by Carayol and Serre using collapsible pushdown automata. The main idea is to start from an infinitary and colored relational semantics of the λY -calculus already for...
متن کاملSemantics of linear logic and higher-order model-checking. (Sémantique de la logique linéaire et "model-checking" d'ordre supérieur)
This thesis studies problems of higher-order model-checking from a semantic and logical perspective. Higher-order model-checking is concerned with the verification of properties expressed in monadic second-order logic, specified over infinite trees generated by a class of rewriting systems called higher-order recursion schemes. These systems are equivalent to simply-typed λ-terms with recursion...
متن کاملColored intersection types: a bridge between higher-order model-checking and linear logic
The model-checking problem for higher-order recursive programs, expressed as higher-order recursion schemes (HORS), and where properties are specified in monadic second-order logic (MSO) has received much attention since it was proven decidable by Ong ten years ago. Every HORS may be understood as a simply-typed λ-term G with fixpoint operators Y whose free variables a, b, c . . . ∈ Σ are of or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science
سال: 2015
ISSN: 2075-2180
DOI: 10.4204/eptcs.177.4